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Scaling of heterogeneous distributions of conductances: Renormalization versus exact results
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In this work we are concerned with the calculation of effective conductance of heterogeneous media. We are
interested in determining the conductance when the system becomes macroscopically homogeneous, and the
disorder length(jD), i.e., the length scale necessary to reach this effective value. Numerical computation of
conductances in two-dimensional lattices is done using an exact numerical method and two different renor-
malization procedures. The conductance values are extracted from~a! power-law, ~b! log-normal, or ~c!
Weibull probability distributions in the interval@0,1#. A parameterm21 is used to measure the degree of
heterogeneity of all three distributions. For the power-law distribution,jD diverges asm→0 with the exponent
n of the percolation correlation length on the same geometrical support. The log-normal and Weibull distri-
bution reduce to a percolation distribution function,P(g)5pd(g21)1(12p)d(g), in the limit m→0. The
disorder length remains finite or diverges depending on whether the effective occupation probabilityp is above
the percolation threshold or not. The analysis carried out here may be generalized to a large number of
long-tailed distributions, for which percolation ideas apply.@S1063-651X~98!05807-3#

PACS number~s!: 47.55.Mh, 64.60.Ak, 05.70.Jk
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I. INTRODUCTION

Scaling of transport properties in porous media is imp
tant in hydrology, soil science, and, in particular, it has
tracted attention in the area of reservoir engineering~see@1#,
and references therein!. Many different scales are involved i
this field: oil reservoir characterization is based on a deta
fine-scale description of geological formations that requi
handling large data sets. On the other hand, geostatistics
dicts property values~i.e., porosity, permeability! based on
several sources of data that range from cores~a few centi-
meters!, well logs~from 30 cm to a few meters!, and seismic
information that spans up to kilometer scales. Reserv
simulation, however, has traditionally worked with smal
sets of data, limited by computing power, and hence
coarser-scale description is required.

Computational grids in reservoir simulations demand
signing local values of the transport properties, e.g., abso
permeability or permeance@2#, to the simulation blocks
Such assignments involve propagating ‘‘microscopic’’ info
mation to a coarser scale. This is in essence the problem
scaling. The connection between scales is nevertheless
trivial since natural formations exhibit heterogeneity valu
that span a large number of characteristic sizes. We will re
to this as strong disorder.

The method employed to scale up transport properties
to average out microscopic quantities in such a way that
effective transport corresponds to the macroscopic deta
solution of the flow problem. The traditional method to d
termine the upscaled permeability is to take either a sim
arithmetic, harmonic, or geometric mean. Among all t
mean values, the geometric mean gives the best estimat
isotropic, random distributions@3#. Although this is a method
frequently used in the oil industry, it does not provide go
estimates for many distribution functions. Analytical met
ods that rely on perturbation approximations@4# or Kirk-
patrick’s effective-medium approximation@5# work well
PRE 581063-651X/98/58~1!/771~8!/$15.00
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only in the case of weak disorder, when fluctuations rem
small. Futhermore, mean field approaches assume tha
transport property is already homogeneous at the sma
scale, i.e., an intensive quantity can always be defined.
merical approaches can be employed to obtain an approp
effective value. However, the expense of computing the
fective quantity is usually too high@6#.

Renormalization group~RG! has been proposed as an a
ternative procedure for finding the effective permeability@7#.
The technique has been employed successfully for nar
distributions, generally performing better than perturbat
approximations@7,8#. Logarithmically broad distributions
have been studied as well but with a small variance or
artificial cutoff @7,9#. In addition, RG has been used to sca
relative permeability@10#. The method can be adapted
account for strong anisotropy in the distribution of condu
tances@3#. The technique implies local averaging, but incl
sion of more degrees of freedom~larger-cell renormaliza-
tion! in each step of renormalization improves the accura
of the method@11#.

In spite of the success of the renormalization procedure
has its pitfalls which merit close scrutiny. The lack of cle
understanding of the scope of this technique involves t
aspects.~a! Practitioners of renormalization do not ofte
carefully determine the number of steps necessary to ob
the asymptotic value of the hydraulic conductance.~b! It is
difficult to know, beforehand, the accuracy of the upsca
conductance. The question of what happens when the
ductance distribution is broadened remains open.

Angulo and Medina@2# dealt with the first of our concern
regarding the number of steps required to reach a homo
neous value of conductance for a broad distribution. Th
carried out a renormalization analysis of the power-law d
tribution, P(g);gm21, on hierarchical lattices, for which
renormalization procedures give exact results. Their findi
indicate that for lattices of effective dimensionde52, m
50 represents a departure from the Gaussian basin, be
771 © 1998 The American Physical Society
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772 PRE 58RICARDO PAREDES V. AND VLADIMIR ALVARADO
which the system is self-averaging. Form5” 0, a disorder
length jD can be defined.jD establishes a system size f
which the system becomes effectively homogeneous. H
ever, asm approachesm50, jD diverges with the exponen
n of the correlation length of ordinary percolation@12#.

In this work, we generalize the findings of Angulo an
Medina to regular Euclidean lattices. For the power-law d
tribution, we compute the effective conductance of tw
dimensional~2D! networks by using two RG procedures a
an exact numerical method. Obtaining exact results allow
to deal with the issue of the accuracy of renormalization
computing the effective conductance. Additionally, we e
plore the scaling behavior of two broad distributions co
mon to applications, the log-normal@7# and Weibull @13#.
These distributions are also characterized by a param
m21, that measures the strength of disorder, i.e., the stre
of the distribution tail. We seek the existence of the disor
length jD for these distributions. Critical behavior (jD
→`) is expected in the vicinity ofm50.

The paper is comprised of five sections. In the seco
section, we explain the renormalization schemes follow
here, namely, King’s@7# and the Migdal-Kadanoff@11# pro-
cedure. King’s renormalization was the starting point for a
plication of this technique in the area of transport in poro
media. On the other hand, Migdal-Kadanoff is a simp
renormalization procedure used commonly in magnetic s
tems. In the third section, we describe the characteristic
the distribution functions employed. Then, the results of
plying renormalization to the three distribution functions
square networks are reported. Finally, we close the art
with a discussion of the results and conclusions, with so
emphasis on the applicability of renormalization for comp
ing effective permeabilities.

II. EFFECTIVE CONDUCTANCE

Renormalization group theory has been used to comp
the effective conduction properties of random-resistor n
works near the percolation thresholdpc since the mid-1970s
@14,15#. The main interest resided in the determination of
critical exponents of the percolation transition. The effectiv
medium approach was already known to fail, below the
per critical dimension, as it cannot account for large fluct
tions in the vicinity ofpc @12#.

The main idea of RG, in the context of computing effe
tive conduction, is to carry out a partial local average t
reduces the number of degrees of freedom accompanied
transformation of scale. In terms of effective quantities,
peated application of the transformation is expected to
duce the magnitude of the fluctuations, i.e., the distributio
assumed to approach a Gaussian-like function of decrea
variance. The method is computationally efficient with re
tively low memory cost. However, it is an approximate s
lution scheme, except for self-similar networks.

For the purpose of computing the effective conductan
we assume that the block permeability at the lowest scale
be mapped onto a resistor network. This way, the en
problem boils down to computing the effective conductan
of the network. We now describe the two procedures sele
as the renormalization schemes: King’s renormalization@7#
~KR! and Migdal-Kadanoff~MK ! renormalization@11#.
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The first step of King’s method of renormalization is
replace block conductances, whose values are drawn fro
microscopic distribution function, by an equivalent resis
network. Local boundary conditions are applied to a 232
block in two dimensions, for which a constant pressure d
is set along the direction of interest. The approximation
King’s procedure is introduced by considering that there
no net flow perpendicular to the direction of interest. T
procedure is summarized in Fig. 1. The renormalized c
ductance in two dimensions is computed as follows:

g854~g11g3!~g21g4!@g2g4~g11g3!

1g1g3~g21g4!#/ge ,

ge[@g2g4~g11g3!1g1g3~g21g4!#@g11g21g31g4#

13~g11g2!~g31g4!~g11g3!~g21g4!. ~1!

In the expressions above,gi ( i 51, . . . ,4) is thepermeance
or hydraulic conductance of each lower-scale block andg8 is
the renormalized conductance. Similar recursion formu
can be easily derived for three-dimensional grids.

The second procedure, MK renormalization, was ori
nally developed from a variational principle applied to ma
netic systems@11#. The procedure is carried out recursive
in two steps as shown in Fig. 2. The first step consists
moving the inner bond conductances to form combinatio
in parallel accounting for some of the original conductan
of the square lattice. The second step, the decimation s
involves combinations of conductances in series resul
from the parallel arrangement during the bond-moving st
This results in a very efficient algorithm whose basic rec
sion equation is

g85S 1

g11g2
1

1

g31g4
D 21

. ~2!

The recursion expression can be easily generalized to t
dimensions. The simplicity of MK is apparent by comparin
Eqs.~1! and ~2!. This makes the MK procedure very attra
tive for its computational efficiency.

FIG. 1. King’s renormalization group procedure. During a pr
liminary step, block conductances of linear sizea are transformed
into bond conductances. Renormalization is performed to fin
coarser-scale valueg. The latter value is assigned to the renorm
ized block conductance of linear sizeb3a. The equivalence be-
tween block value and bond conductance is indicated in the dr
ing.
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FIG. 2. Migdal-Kadanoff’s renormalization
group procedure. The bond conductance netw
is indicated in the drawing. The bond-movin
step leads to parallel combinations of condu
tances (g1 ,g2) and (g3 ,g4). The decimation step
combines those in series to yield the effecti
valueg at the coarse-grained scale.
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Percolation theory will be essential to understand the
sults. Each of the renormalization methods leads to a hie
chical structure whose percolation thresholdpc and the cor-
responding correlation length exponentn can be calculated
from theory. These quantities do not necessarily match th
of the square lattice, as displayed in Table I. In the follo
ing, the hierarchical structures for the MK and KR renorm
ization procedures are called MK and KR networks, resp
tively.

III. DISTRIBUTION FUNCTIONS

A discussion of the main features of the power-la
Weibull, and log-normal distributions is now pertinent, wi
emphasis in discerning the form of these functions asm
→0. The three distributions were mapped onto the inter
@0,1#. This is equivalent to using distributions of resistanc
in the @1,̀ ) range. It is in this range where the strength
the disorder is more easily observed by following the form
the distribution tails, which determines the moments t
may even in fact diverge.

When the distributions are employed in the@0,1# region,
all moments of the distributions are finite. However, wh
seen in log-log scales, the distribution functions exhibit d
sity values along many decades of the conductance axis.

TABLE I. Percolation threshold (pc) and correlation length ex
ponent (n) of the different lattices. The values were determin
theoretically from renormalization.

Lattice pc n

Square 1
2

4
3

King’s
A521

2
'0.618

log102

log10~622A5!
'1.635

Migdal-Kadanoff
32A5

2
'0.382

log102

log10~622A5!

Berkera A521

2

log102

log10~622A5!

aBerker renormalization is included because it will be used later
the discussion of results.
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behavior reflects the properties of the corresponding re
tance distribution. We will use the power-law distribution
model extreme disorder. The specific function chosen is

PPL~g!5mgm21, 0<g<1. ~3!

The distribution has three distinct behaviors. It tends
d(g21) for m@1 and reduces to a uniform random dist
bution for m51. Our interest focuses on the region 0,m
,1. In this range,PPL(g) exhibits a high concentration o
low conductance values that grows in a power-law fash
towardsg50.

For the log-normal distribution,P̃LN(r )5Am/pe2 ln2r/r
for r P@0,̀ ), an appropriate change of variable,r→1/g21,
leads to the following:

PLN~g!5Am

p

e2m ln2[ ~12g!/g]

~12g!g
, 0<g<1. ~4!

A similar change of variable for the Weibull distribution
P̃W(r )5me2r m

r m21 for r P@0,̀ ), gives

PW~g!5m
e2[ ~12g!/g] m

~12g!m21

gm11
, 0<g<1. ~5!

The variance of these distributions was replaced by
equivalent parameterm, such thatm→0 drives the function
to the largest contrast in conduction on the networks. T
fact is linked to the percolation characteristics of the dis
bution functions.

The interesting features of the effective conductance
the lattice stem from the binary limiting distribution of th
log-normal and Weibull cases. The existence of a limiti
binary distribution can be explained based on simple ar
ments. For all values ofm, the log-normal distribution is
symmetric with respect tog51/2. It is observed that in the
limit m→0, PLN(g) vanishes for intermediate values ofg,
and diverges atg50 andg51. Therefore asm→0, PLN(g)
is essentially nonzero only in the vicinity of eitherg50 or
g51. The width of the resulting peaks reduces monoto
cally with decreasing values ofm, and hence the height o
those peaks grows without bound to keep the distribut
normalized. Since the function ought to be positive, the o
r
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774 PRE 58RICARDO PAREDES V. AND VLADIMIR ALVARADO
option is to have a binary distribution, with effective occ
pation probabilityp50.5, given that the function is symme
ric. By the same sort of arguments a similar observation
be drawn for the Weibull distribution, in the vicinity ofm
50, except that the probability of occupation of nonze
conductances isp512e21'0.632 ~surmised from numer-
ics!. The limiting distribution is then

lim
m→0

P~g!5~12p!d~g!1pd~g21!. ~6!

This, in fact, is the binary distribution used in ordinary pe
colation @12#. Figure 3 illustrates this for the Weibull distri
bution. These particular values ofp determine the effective
permeability as a function of the renormalization method
m→0. For instance, ifp is below the percolation threshol
of a given lattice, renormalization will drive the effectiv
conductance to zero.

IV. RESULTS

The behavior of the effective conductance and disor
length for 2D systems will be shown as functions of t
system size and disorder strength. To compare renorma
tion results, we computed a numerical exact solution ba
on the algorithm developed originally by Frank and Lo
@16# ~FL! using the¹-Y transformation. Here, we will refe
to the results of the FL algorithm as exact. This method
a computational cost proportional toN logN, in contrast,
renormalization has a cost proportional toN (N is the num-
ber of bonds!. All length scales are in units of the lattic
constant and conductances are made dimensionless by
the maximum microscopic conductance. The linear sys
size ranges fromL52 up to L5216532 768 for renormal-
ization calculations, and considerably smaller lattices (Lmax
52048) for the FL algorithm. For all the cases, a sufficie
number of realizations were carried out to decrease the r
tive error to less than 1%. The difficulty resulting from ha
dling of very large and very small floating-point numbe
forced the development of extended numerical precision r
tines. Here,Geq is defined as the equivalent conductance o

FIG. 3. Weibull distribution as a function ofm. As m is lowered,
the distribution becomes a binary distribution with peaks atg50
andg51.
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lattice, whether it is the result of applying the FL algorith
or renormalization procedures.GjD

is the value ofGeq for a

system sizeL>jD . From the definition ofjD , the latter
means that the system is effectively homogeneous.

For the log-normal and Weibull distributions, the cruci
parameter is the probability of occupation,p. Because the
log-normal distribution has a value ofp50.5 @Eq. ~6!#, the
KR does not lead to a connected network. This is true as
percolation threshold of the KR lattice ispc'0.618.p. The
latter means that the effective conductance will vanish
small values ofm. In contrast, the Migdal-Kadanoff lattice
being well above percolation, withpc'0.382,p, yields a
finite value ofGjD

. These two opposite behaviors contra
with the exact result, since the bond network is right at
threshold. Results for the Weibull distribution are easily p
dicted by knowing thatp512e21, which is greater than the
percolation threshold of any of the networks used here
rapid convergence to a homogeneous system is expecte
this distribution, perhaps with the exception of KR renorm
ization which is close to the percolating limit of its lattice fo
this value ofp.

Power-law case. Figure 4 shows the upscaled distributio
using the FL algorithm, for a particular value ofm. The
coarser-scale distribution on the square network shows
averaging small blocks leads to a narrower distribution, e
for small values ofm. This confirms that a Gaussian-lik
distribution is the limiting one for the power law. The de
creasing value of the variance of the renormalized distri
tion is also evidence of the existence of a disorder lengthjD .
This length scale depends onm ~for m→0) as j;m2n,
wheren is the correlation length exponent of ordinary pe
colation@2#. Hence, one can collapse the conductance of
network, by rescalingGeq and L by GjD

and jD , respec-
tively. This collapse was achieved by using the correlat
length exponent of percolation in 2D (n54/3), as Fig. 5~a!
shows. A diverging value ofjD is also found for the MK as
well as KR renormalization. This is shown in Figs. 5~b! and
5~c!. The overlap is consistent with the correlation leng
exponent for the MK and KR networks (n51.635). From
the above, one can generalize the conclusions derived
hierarchical structures@2# to Euclidean lattices.

FIG. 4. Approach of the power-law distribution to a Gaussia
like distribution as the system sizeL→`. Geq was computed for the
FL algorithm withm50.25.
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FIG. 5. Normalized conductanceGeq/GjD
versusL/jD , wherejD;m2n. ~a! Frank and Lobb’s algorithm,~b! Migdal-Kadanoff proce-

dure, and~c! King’s procedure. Choosing the corresponding correlation length exponent in each case gives an excellent collapsen54/3,
1.635, and 1.635 for cases~a!, ~b!, and~c!, respectively.
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A prediction made by Angulo and Medina@2#, based on
arguments of Ambegaokaret al. @17#, involves the depen-
dence ofGjD

on m as

GjD
}~12pc!

1/m, ~7!

where pc is the percolation threshold of the network. Th
arguments are valid for broad distributions. A plot
log10(GjD

) with 1/m should yield a straight line whose slop

is log(12pc). This prediction can be verified for the F
algorithm and renormalization methods. Figure 6 depict
very good agreement of the results with the theoretical p
diction. In fact, the values ofpc obtained by carrying out a
regression analysis are 0.493, 0.617, and 0.381 for the sq

FIG. 6. Logarithm of the conductance beyond the disor
length vsm21 for the power-law distribution. (h) FL algorithm,
(s) Migdal-Kadanoff procedure, (*) King’s method, (L) Berker
renormalization. Lines correspond to the fit to Eq.~7!. The inset is
an enlargement of the left upper region of the plot, which shows
exact result only.
a
-

are

network, KR procedure, and MK procedure, respectively.
these results deviate less than 2% from the theoretical
ues. To further verify the validity of Eq.~7!, similar compu-
tations of Geq were carried out for Berker and Ostlund
network @18#, which has the same percolation threshold
King’s lattice and the same value ofn. It is striking that the
curve obtained using KR lies so close to that determined
Berker’s network~see Fig. 6! whose computational cost i
similar to that of MK.

Log-normal case. Let us recall that this distribution tend
to a double-d form with p50.5, asm→0 @Eq. ~6!#. This
value of p coincides with the percolation threshold (pc) of
the square lattice, and hence in the limitm→0, the effective
conductance of the log-normal distribution on the square n
work should exhibit the behavior of the system atpc . For the
purpose of comparison, we directly computed the equiva
conductance of a square lattice for the binary distribution
Eq. ~6! with p50.5. Figure 7 indicates that indeed the valu
of Geq progressively get closer to the percolation lin
~straight line in the figure! as m→0. The definition ofjD

r

e
FIG. 7. The behavior ofGeq approaches percolation asm→0 for

the log-normal distribution using the FL algorithm. The heavy li
is a linear fit of the percolation results (s).
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776 PRE 58RICARDO PAREDES V. AND VLADIMIR ALVARADO
implies thatGeq should reach a constant value for a syst
size beyond this length scale. Therefore it can be dedu
from Fig. 7 that the disorder length in this case diverg
whenm→0.

The MK network should percolate at a probability of o
cupationp50.5, because its threshold value ofpc,p. This
means that the network should homogenize rapidly with
application of the renormalization recursion equation. At
same time, the disorder length should reach a satura
value. Figure 8 verifies these predictions. Indeed, the c
ductance reaches its asymptotic value after a few iterat
of the renormalization rule. For King’s renormalization pr
cedure, things are entirely different. Forp50.5, renormaliza-
tion should drive the conductance of the network to ze
because the network cannot percolate (pc50.618.0.5).

Figure 9 clearly summarizes the differences among
three procedures for computingGjD

when applied to the log-
normal distribution. For a mildly disordered network, that

FIG. 8. NormalizedGeq vs L for the log-normal distribution
using the Migdal-Kadanoff renormalization. The inset illustra
how jD saturates for small values ofm.

FIG. 9. The effective conductance in the homogeneous limi
the disorder strength parameterm for the log-normal distribution
function. (s) Migdal-Kadanoff procedure; (h) FL algorithm; (L)
King’s renormalization. The dashed line corresponds to the equ
lent conductance for percolation withp50.5, under application of
the MK recursion equation.
ed
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for large values ofm, the three methods do not give excee
ingly different values ofGjD

. As the network becomes mor
and more disordered, the percolating behavior dominates
form of the curves. Methods that lead to a connected netw
are driven to a constant finite value ofGjD

, while those
below the percolation threshold are driven to vanishing
fective conductance. Interestingly enough, the KR proced
gives reasonable results for values ofm.0.1, as seen from
the figure, but asm is lowered close to zero, the effectiv
conductance vanishes rapidly, while the MK conductance
mains finite. The true effective conductance falls in betwe
but eventually should vanish asm→0.

Weibull case. This distribution is not expected to exhibit
diverging disorder length provided that the exact and ren
malization methods used in this work for calculating the
fective conductance lead to a connected network for this
tribution. The limiting binary distribution asm→0 has an
occupation fractionp512e21. This value is larger than the
pc of the square lattice and for either one of the renorm
ization networks used in this work. For all cases, the value
GjD

is reached after a few applications of the renormali
tion recursion or equivalently for small sizes of the samp
Figure 10 shows how the effective conductance behavesm
is decreased. The exact result proves that if the curves
collapsed, the resulting disorder length saturates rapidly~see
inset of Fig. 10!. Recalling thatpc50.5 explains this rapid
convergence. By the same token, the MK network, be
well above its percolation threshold, evolves in the same w
as the exact result withm. The KR lattice is close to its value
of pc , and this should have an important effect on the fin
value of Geq. It can be seen that the effective asympto
conductance of the KR procedure approaches the valu
the true conductance for large values ofm ~Fig. 11!. As m
becomes smaller, the MK procedure result gets closer to
true conductance, while the KR result grows apart from
true value ofGjD

.

V. DISCUSSION AND CONCLUSIONS

We have studied the upscaling of hydraulic conducta
of three distribution functions in the interval@0,1# on square

s

a-

FIG. 10. NormalizedGeq vs L for the Weibull distribution using
the FL algorithm. The inset illustrates howjD saturates for small
values ofm.



n
o
s
it

x-
av

h
ar
th
on
l-

na
f

re

n

g
sh
ns

e
a
l-
ite
sh
th
he
uc
Th
co
vio

for

the

y
ll
of

e is

ood
n.
ot

mit

ear
ield

r-
,

in
of

o
e

ate,
on

est
ther
c-

t
ped

u-

nce
se
h

ned
cola-
se.

hod
u-
ed
iv-
be
ce-
et-
the

or-
co-
be

t v
nc

tio
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networks by using an exact method, the FL algorithm, a
two approximate renormalization schemes, King’s meth
and Migdal-Kadanoff procedure. The distribution function
power-law, log-normal, and Weibull distributions exhib
very different features under renormalization.

The main result for the power-law distribution is the e
istence of a disorder length, on square networks, that beh
in the same fashion as that found by Angulo and Medina@2#
on hierarchical lattices. The disorder parameterm has a criti-
cal valuem50, for networks of effective dimensionde52.
jD diverges asm2n in the proximity ofm50, for all meth-
ods employed for computing the effective conductance. T
divergence exponent of the correlation length of ordin
percolation is consistent with the divergence exponent of
disorder length. This was verified for both renormalizati
procedures employed in this work, which yield different va
ues ofn. This extends the conclusions of Angulo and Medi
to square networks. It is expected that the same holds
many other regular lattices. The dependence ofGjD

on m in
the critical region agrees very well with the theoretical p
diction thatGjD

;(12pc)
1/m.

The log-normal distribution goes to a binary distributio
with a probability of occupation,p50.5 as m→0. This
makes the analysis of the FL algorithm very interestin
since the limitm50 represents the exact percolation thre
old of this lattice. This was verified by extensive simulatio
for large sizes and very small values ofm. The percolation
line, represented by the effective conductance of the lattic
percolation, is indeed the limiting value of the log-norm
distribution. It turns out that the Migdal-Kadanoff renorma
ization drives the conductance of the network to a fin
value, as the MK lattice is well above the percolation thre
old. In this way, the disorder length saturates under
renormalization scheme. King’s renormalization, on t
other hand, yields a vanishing value of the effective cond
tance after a few applications of the recursion equation.
two procedures cause departures from the true value of
ductance that are on opposite sides of the limiting beha

FIG. 11. The effective conductance in the homogeneous limi
the disorder strength parameter for the Weibull distribution fu
tion. (s) Migdal-Kadanoff procedure; (h) FL algorithm; (L)
King’s renormalization. The dashed lines correspond to percola
with p50.632 for the three methods.
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asm→0. King’s renormalization gives reasonable results
m.0.1, but fails badly to estimate the correct value ofGeq

for m,0.1. This should not come as a surprise given
percolative character of the limiting distribution.

Weibull’s limiting distribution has an effective probabilit
of occupation,p, that leads to connected networks for a
methods employed here. This means that in the vicinity
m50, all procedures give a finite value ofGjD

, andjD never

diverges. However, because the KR hierarchical structur
close to its value ofpc ~from below!, it tends to have the
lowest value ofGjD

. The KR procedure, that works well in

relatively homogeneous systems, does not provide a g
estimate for the extreme disorder of the Weibull distributio
With respect to the MK renormalization, although it does n
work for all cases, it remains as a better estimate in the li
of extreme disorder.

From the aforementioned discussion, it should be cl
that any of the renormalization methods employed here y
reasonable values ofGeq for the square network, as long asm
remains sufficiently large. The latter is true for the powe
law distribution if m is larger than 0.1 approximately
whereas for the log-normal and Weibull distributionsm
could be somewhat smaller. King’s procedure performs,
general, better than Migdal-Kadanoff, with the exception
the power-law distribution~again, only in the limit of non-
vanishingm). However, it is out of the scope of this article t
identify a particular method of renormalization, rather w
discuss the appropriate choice of the method. As we indic
the choice refers to the strongest disorder limit, based
percolation analysis.

The results for the Weibull and log-normal cases sugg
that the percolation analysis could be extrapolated to o
distributions. There is a large number of distribution fun
tions of resistances on the@0,̀ # domain that should exhibi
similar characteristics when the conductances are map
onto the@0,1# interval. For instance, an exponential distrib
tion function, P(r )5(1/m)exp(2r/m), goes to P(g)
5(1/mg2)exp@2(1/m)(1/g21)#. In the limit m→0, P(g)
→d(g21). Long-tail resistance distributions in the@0,̀ )
domain should produce a large accumulation of conducta
values atg50. Our extreme case is the power law, who
limit is d(g). On the other hand, if we were dealing wit
distributions of conductances in the@0,̀ ) region, it should
be noticed that the way the random variables are combi
resembles that of the resistances. We propose that per
tion ideas are directly applicable to this complementary ca

An interesting classical result, found by Bernasconi@15#,
suggests that the choice of the renormalization met
should pay attention to the character of the limiting distrib
tion. Although his renormalization procedure predict
wrong critical exponents, it gave good results for conduct
ity in a square network at percolation. This result can
explained based on the fact that his renormalization pro
dure had the same percolation threshold of the original n
work, and hence its effective conductance vanished for
same value ofp. This indicates that if the limiting distribu-
tion leads to percolating behavior, the choice of the ren
malization method should be based on a similarity of per
lation thresholds, or else the effective conductance will
incorrectly predicted.
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Our results show that renormalization has to be used v
carefully to compute effective conductances. This is parti
larly true for cases of extreme disorder for which renorm
ization schemes will drive the system’s conductance a
from its true value, either towards zero, or to finite, b
wrong, limiting values.
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