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In this work we are concerned with the calculation of effective conductance of heterogeneous media. We are
interested in determining the conductance when the system becomes macroscopically homogeneous, and the
disorder length(&p), i.e., the length scale necessary to reach this effective value. Numerical computation of
conductances in two-dimensional lattices is done using an exact numerical method and two different renor-
malization procedures. The conductance values are extracted (Bopower-law, (b) log-normal, or(c)

Weibull probability distributions in the intervdl0,1]. A parametery, ! is used to measure the degree of
heterogeneity of all three distributions. For the power-law distributigndiverges ag.— 0 with the exponent

v of the percolation correlation length on the same geometrical support. The log-normal and Weibull distri-
bution reduce to a percolation distribution functid®,g)=pd(g—1)+(1—p)4(g), in the limit u—0. The
disorder length remains finite or diverges depending on whether the effective occupation propabitiyove

the percolation threshold or not. The analysis carried out here may be generalized to a large number of
long-tailed distributions, for which percolation ideas app®1063-651X98)05807-3

PACS numbg(s): 47.55.Mh, 64.60.Ak, 05.70.Jk

[. INTRODUCTION only in the case of weak disorder, when fluctuations remain
small. Futhermore, mean field approaches assume that the
Scaling of transport properties in porous media is impor4ransport property is already homogeneous at the smallest
tant in hydrology, soil science, and, in particular, it has at-scale, i.e., an intensive quantity can always be defined. Nu-
tracted attention in the area of reservoir enginee(aag| 1], merical approaches can be employed to obtain an appropriate
and references thergirMany different scales are involved in effective value. However, the expense of computing the ef-
this field: oil reservoir characterization is based on a detailedective quantity is usually too higf6].
fine-scale description of geological formations that requires Renormalization grougpRG) has been proposed as an al-
handling large data sets. On the other hand, geostatistics prernative procedure for finding the effective permeab(It)
dicts property valuesi.e., porosity, permeabililybased on The technique has been employed successfully for narrow
several sources of data that range from cdee$ew centi-  distributions, generally performing better than perturbation
meters$, well logs(from 30 cm to a few meteysand seismic  approximations[7,8]. Logarithmically broad distributions
information that spans up to kilometer scales. Reservoihave been studied as well but with a small variance or an
simulation, however, has traditionally worked with smaller artificial cutoff[7,9]. In addition, RG has been used to scale
sets of data, limited by computing power, and hence aelative permeabilityf10]. The method can be adapted to
coarser-scale description is required. account for strong anisotropy in the distribution of conduc-
Computational grids in reservoir simulations demand astanceq 3]. The technique implies local averaging, but inclu-
signing local values of the transport properties, e.g., absolutgion of more degrees of freedottarger-cell renormaliza-
permeability or permeancg], to the simulation blocks. tion) in each step of renormalization improves the accuracy
Such assignments involve propagating “microscopic” infor- of the method 11].
mation to a coarser scale. This is in essence the problem of In spite of the success of the renormalization procedure, it
scaling. The connection between scales is nevertheless nohas its pitfalls which merit close scrutiny. The lack of clear
trivial since natural formations exhibit heterogeneity valuesunderstanding of the scope of this technique involves two
that span a large number of characteristic sizes. We will refeaspects.(a) Practitioners of renormalization do not often
to this as strong disorder. carefully determine the number of steps necessary to obtain
The method employed to scale up transport properties habe asymptotic value of the hydraulic conductand®.lt is
to average out microscopic quantities in such a way that thdifficult to know, beforehand, the accuracy of the upscaled
effective transport corresponds to the macroscopic detailedonductance. The question of what happens when the con-
solution of the flow problem. The traditional method to de-ductance distribution is broadened remains open.
termine the upscaled permeability is to take either a simple Angulo and Medin42] dealt with the first of our concerns
arithmetic, harmonic, or geometric mean. Among all theregarding the number of steps required to reach a homoge-
mean values, the geometric mean gives the best estimate foeous value of conductance for a broad distribution. They
isotropic, random distributior$]. Although this is a method carried out a renormalization analysis of the power-law dis-
frequently used in the oil industry, it does not provide goodtribution, P(g)~g#~1, on hierarchical lattices, for which
estimates for many distribution functions. Analytical meth-renormalization procedures give exact results. Their findings
ods that rely on perturbation approximatiopd or Kirk- indicate that for lattices of effective dimensiah=2, u
patrick’s effective-medium approximatiofb] work well =0 represents a departure from the Gaussian basin, beyond
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which the system is self-averaging. Far#0, a disorder . a ba
length £, can be definedé, establishes a system size for ,/
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ever, asu approacheg.=0, &p diverges with the exponent
v of the correlation length of ordinary percolatiph2]. | %
In this work, we generalize the findings of Angulo and !

Medina to regular Euclidean lattices. For the power-law dis- /,'_\

tribution, we compute the effective conductance of two-/ |
dimensional2D) networks by using two RG procedures and _
an exact numerical method. Obtaining exact results allows us - g
to deal with the issue of the accuracy of renormalization for
computing the effective conductance. Additionally, we ex-
plore the scaling behavior of two broad distributions COm'liminary step, block conductances of linear seare transformed

mr(])n todf_slppltl)ca_tlons, the Ilog-n(r)]rmé'f'] anddV\kl)elbuII[13]. into bond conductances. Renormalization is performed to find a
These distributions are also characterized by a parametely, ser.seale valug. The latter value is assigned to the renormal-

71 . .
u, that measures the strength of disorder, i.e., the strengibeq piock conductance of linear site<a. The equivalence be-
of the distribution tail. We seek the existence of the disordegyeen block value and bond conductance is indicated in the draw-

length ¢p for these distributions. Critical behaviorég ing.
— ) is expected in the vicinity oft=0.

The paper is comprised of five sections. In the second The first step of King’s method of renormalization is to
section, we explain the renormalization schemes followedeplace block conductances, whose values are drawn from a
here, namely, King'$7] and the Migdal-Kadanoff11] pro-  mijcroscopic distribution function, by an equivalent resistor
cedure. King'’s renormalization was the starting point for ap-network. Local boundary conditions are applied to &2
plication of this technique in the area of transport in porousplock in two dimensions, for which a constant pressure drop
media. On the other hand, Migdal-Kadanoff is a simplejs set along the direction of interest. The approximation in
renormalization procedure used commonly in magnetic sysing's procedure is introduced by considering that there is
tems. In the third section, we describe the characteristics gig net flow perpendicular to the direction of interest. The
the diStI’ibution fUnCtionS employed. Then, the reSUItS Of ap'procedure is summarized in F|g 1. The renorma“zed con-

square networks are reported. Finally, we close the article

FIG. 1. King's renormalization group procedure. During a pre-

with a discussion of the results and conclusions, with some 9’ =4(g1+93)(J2+ 94)[9294(91 +93)
emphasis on the applicability of renormalization for comput-
ing effective permeabilities. +09193(92+94) 1/ Qe
. EFFECTIVE CONDUGTANCE 9e=[9204(91%93) + 9193(92+ 94) 1[92+ 92+ G5+ Q]
Renormalization group theory has been used to compute +3(91%02)(93+94)(91+ 03) (92 9a).- @)

the effective conduction properties of random-resistor neti h . b _— o is th
works near the percolation threshgid since the mid-1970s n the expressions abovg; (i=1,...,4) is thepermeance

[14,15. The main interest resided in the determination of the®" Nydraulic conductance of each lower-scale block ghts

critical exponents of the percolation transition. The effective—the Lenorm_rl:lllzded_ c%n?uctﬁncea.&mlla.r relcur%lon formulas
medium approach was already known to fail, below the up<an b€ €aslly derived for three-dimensional grids.

per critical dimension, as it cannot account for large fluctua- The second procedure,_ MK reno'rmgllzatlon,. was ongi-
tions in the vicinity ofp, [12] nally developed from a variational principle applied to mag-
c .

The main idea of RG, in the context of computing effec- netic systemg11]. The procedure is carried out recursively

tive conduction, is to carry out a partial local average tha n two steps as shown in Fig. 2. The first step consists of
reduces the number of degrees of freedom accompanied by oving the inner bond conductances to form combinations

transformation of scale. In terms of effective quantities, re" parallel accounting for some of the original conductance

peated application of the transformation is expected to re_(-)f the square lattice. The second step, the decimation step,

duce the magnitude of the fluctuations, i.e., the distribution i nvolves combinations of conducfcances In Series _resultmg
assumed to approach a Gaussian-like function of decreasi m the pargllel arrangement durln_g the bond-mov_lng step.
variance. The method is computationally efficient with rela- . IS result; In a very efficient algorithm whose basic recur-
tively low memory cost. However, it is an approximate so-Son equation is
lution scheme, except for self-similar networks.

For the purpose of computing the effective conductance, g’ =
we assume that the block permeability at the lowest scale can
be mapped onto a resistor network. This way, the entire
problem boils down to computing the effective conductanceThe recursion expression can be easily generalized to three
of the network. We now describe the two procedures selectedimensions. The simplicity of MK is apparent by comparing
as the renormalization schemes: King's renormalizafish  Egs.(1) and(2). This makes the MK procedure very attrac-
(KR) and Migdal-KadanoffMK) renormalizatior 11]. tive for its computational efficiency.
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Bond Moving Decimation

ba

4 FIG. 2. Migdal-Kadanoff's renormalization
group procedure. The bond conductance network
is indicated in the drawing. The bond-moving

\ 0= b step leads to parallel combinations of conduc-

tances ¢,0,) and @3,94). The decimation step

‘\ combines those in series to yield the effective

valueg at the coarse-grained scale.

& &

Percolation theory will be essential to understand the rebehavior reflects the properties of the corresponding resis-
sults. Each of the renormalization methods leads to a hieratance distribution. We will use the power-law distribution to
chical structure whose percolation threshpldand the cor- model extreme disorder. The specific function chosen is
responding correlation length exponentan be calculated
from theory. These quantities do not necessarily match those Pe(@)=png* !, Osgs<l. ©)
of the square lattice, as displayed in Table I. In the follow- o - ,
ing, the hierarchical structures for the MK and KR renormal- 1€ distribution has three distinct behaviors. It tends to

ization procedures are called MK and KR networks, respecd(9—1) for u>1 and reduces to a uniform random distri-
tively. bution for u=1. Our interest focuses on the regior<@

<1. In this rangePp (g) exhibits a high concentration of
low conductance values that grows in a power-law fashion
towardsg=0.

A discussion of the main features of the power-law, For the log-normal distributionTD,_N(r)= M/We—'nzf/r
Weibull, and log-normal distributions is now pertinent, with for r [0,), an appropriate change of variabte; 1/g—1,
emphasis in discerning the form of these functionsuas |eads to the following:

—0. The three distributions were mapped onto the interval

[0,1]. This is equivalent to using distributions of resistances Mewlnz[(lfg)/g]
in the[1%) range. It is in this range where the strength of Pun(g) = \/;W
the disorder is more easily observed by following the form of
the distribution tails, which determines the moments thaly gimijar change of variable for the Weibull distribution,
may even in fact diverge. ~ B

When the distributions are employed in th&1] region, Pu(r)=ue
all moments of the distributions are finite. However, when
seen in log-log scales, the distribution functions exhibit den- Pu(9)=p
sity values along many decades of the conductance axis. This g+t

Ill. DISTRIBUTION FUNCTIONS

0=g=<1. (4)

—rM

r“~1forre[0), gives

e [1-9/al¥ (1 —qg)r-1

TABLE I. Percolation thresholdi) and correlation length ex- The variance of these distributions was replaced by an
ponent () of the different lattices. The values were determined equivalent parametew, such thatu—0 drives the function

theoretically from renormalization. to the largest contrast in conduction on the networks. This
: fact is linked to the percolation characteristics of the distri-
Lattice Pe v bution functions.
Square 1 4 The interesting features of the effective conductance of
the lattice stem from the binary limiting distribution of the
King's \/g—lko 618 10912 1635 log-normal and Weibull cases. The existence of a limiting
2 ' log;o(6—2V5) binary distribution can be explained based on simple argu-
_ 3-5 logye2 ments. For all values of:, the log-normal distribution is
Migdal-Kadanoff ~ —_"~~<0.382 B symmetric with respect tg=1/2. It is observed that in the
2 log,(6-25) limit x—0, P.n(g) vanishes for intermediate values of
51 log;p2 f'ind diver.ges ag=0 andg= 1 Therefqr_e a&*).O, P.n(g)
Berker? ¥ - logyo(6—21/5) is essentially nonzero only in the vicinity of eithge=0 or
2 g=1. The width of the resulting peaks reduces monotoni-

cally with decreasing values qf, and hence the height of
@erker renormalization is included because it will be used later fothose peaks grows without bound to keep the distribution
the discussion of results. normalized. Since the function ought to be positive, the only
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FIG. 3. Weibull distribution as a function gf. As w is lowered, FIG. 4. Approach of the power-law distribution to a Gaussian-
the distribution becomes a binary distribution with peakgat0 Jike distribution as the system site—w. G.,was computed for the
andg=1. FL algorithm with x=0.25.

option is to have a binary distribution, with effective occu- lattice, whether it is the result of applying the FL algorithm
pation probabilityp=0.5, given that the function is symmet- or renormalization procedure§,  is the value oG, for a
ric. By the same sort of arguments a similar observation cagystem sizeL>&,. From the definition of¢y, the latter
be drawn for the Weibull distribution, in the vicinity gf  means that the system is effectively homogeneous.
=0, except that the probability of occupation of nonzero For the log-normal and Weibull distributions, the crucial
conductances '$’:_1__e__1”0_-632 (surmised from numer-  parameter is the probability of occupatiom, Because the
ics). The limiting distribution is then log-normal distribution has a value gf=0.5 [Eq. (6)], the
KR does not lead to a connected network. This is true as the
_ percolation threshold of the KR lattice jig~0.618>p. The
lim P(g)=(1-p)é(g)+pdélg—1). (6)  latter means that the effective conductance will vanish for
=0 small values ofu. In contrast, the Migdal-Kadanoff lattice

L . . e . . being well above percolation, witp.~0.382<p, yields a
This, in fact, is the binary distribution used in ordinary per- . . .
colation[12]. Figure 3 illustrates this for the Weibull distri- f|r_1|te value OfoD' The_se two opposite behav_|ors_ contrast
bution. These particular values pfdetermine the effective With the exact result, since the bond network is right at the
permeability as a function of the renormalization method adhreshold. Resuits for the Weibull distribution are easily pre-
u—0. For instance, ip is below the percolation threshold dicted by knowing thap=1—e"~, which is greater than the
of a given lattice, renormalization will drive the effective Percolation threshold of any of the networks used here. A
conductance to zero. rapid convergence to a homogeneous system is expected for

this distribution, perhaps with the exception of KR renormal-
ization which is close to the percolating limit of its lattice for
this value ofp.

The behavior of the effective conductance and disorder Power-law caseFigure 4 shows the upscaled distribution
length for 2D systems will be shown as functions of theusing the FL algorithm, for a particular value of. The
System size and disorder Strength_ To compare renorma"z&ﬂarser'scale distribution on the square network shows that
tion results, we computed a numerical exact solution base@veraging small blocks leads to a narrower distribution, even
on the a|gorithm deve'oped origina”y by Frank and Lobbfor Sma” VaIUeS Of,bb ThlS Confil’mS that a Gaussian'like
[16] (FL) using theV-Y transformation. Here, we will refer distribution is the limiting one for the power law. The de-
to the results of the FL algorithm as exact. This method ha§reasing value of the variance of the renormalized distribu-
a computational cost proportional tdlogN, in contrast, tion is also evidence of the existence of a disorder ledgth
renormalization has a cost proportionalNo(N is the num- ~ This length scale depends qu (for ©—0) as&~u™",
ber of bonds All length scales are in units of the lattice Wherev is the correlation length exponent of ordinary per-
constant and conductances are made dimensionless by usif@ation[2]. Hence, one can collapse the conductance of the
the maximum microscopic conductance. The linear systerR€twork, by rescalingseq and L by G, and &y, respec-
size ranges from.=2 up toL=2%=32 768 for renormal- tively. This collapse was achieved by using the correlation
ization calculations, and considerably smaller latticeg.( length exponent of percolation in 2D€ 4/3), as Fig. )
=2048) for the FL algorithm. For all the cases, a sufficientshows. A diverging value ofp is also found for the MK as
number of realizations were carried out to decrease the relavell as KR renormalization. This is shown in Figgbband
tive error to less than 1%. The difficulty resulting from han- 5(c). The overlap is consistent with the correlation length
dling of very large and very small floating-point numbers exponent for the MK and KR networksy& 1.635). From
forced the development of extended numerical precision routhe above, one can generalize the conclusions derived for
tines. HereGq is defined as the equivalent conductance of ehierarchical structuref2] to Euclidean lattices.

IV. RESULTS
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FIG. 5. Normalized conductan@eq/GgD versusL/ &y, whereép~ ™", (8) Frank and Lobb’s algorithm(p) Migdal-Kadanoff proce-

dure, and(c) King's procedure. Choosing the corresponding correlation length exponent in each case gives an excellenticoldBse.
1.635, and 1.635 for caséa), (b), and(c), respectively.

A prediction made by Angulo and Medif&], based on
arguments of Ambegaokaet al. [17], involves the depen-
dence ofG;_ on u as

network, KR procedure, and MK procedure, respectively. All
these results deviate less than 2% from the theoretical val-
ues. To further verify the validity of Ed7), similar compu-
tations of G¢4 were carried out for Berker and Ostlund’s
network [18], which has the same percolation threshold of
King's lattice and the same value of It is striking that the
curve obtained using KR lies so close to that determined for
Berker's network(see Fig.  whose computational cost is
where p, is the percolation threshold of the network. The Similar to that of MK.

arguments are valid for broad distributions. A plot of Log-normal caseLet us recall that this distribution tends
log,o(G¢,) with 1/u should yield a straight line whose slope to @ doubles form with p=0.5, asu—0 [Eq. (6)]. This

is log(1—p,). This prediction can be verified for the FL value of p coincides with the percolation thresholg.j of

algorithm and renormalization methods. Figure 6 depicts 4N€ Square lattice, and hence in the limit- 0, the effective

very good agreement of the results with the theoretical pre(_:onductance of the log-normal distribution on the square net-

diction. In fact, the values of, obtained by carrying out a work should exhibit the behavior of the systenpat For the

regression analysis are 0.493, 0.617, and 0.381 for the squaPd"P0se of comparison, we directly computed the equivalent
' ' conductance of a square lattice for the binary distribution in

Eq. (6) with p=0.5. Figure 7 indicates that indeed the values

G§DOC(1_pc)l/'u: (7)

of Ggq progressively get closer to the percolation line
(straight line in the figureas u—0. The definition ofép
- — 10’ :
T —40 \X T M% °
<) 0 i \ bt
= . N
o% -60 D\‘l‘ﬂ\ \&\ 10" L .
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FIG. 6. Logarithm of the conductance beyond the disorder 10 10° 10" 10° 10° 10*
length vsu ™! for the power-law distribution.[{l) FL algorithm, L

(O) Migdal-Kadanoff procedure, (*) King’'s method() Berker

renormalization. Lines correspond to the fit to Ef). The inset is FIG. 7. The behavior 0G4 approaches percolation ps-0 for

an enlargement of the left upper region of the plot, which shows théhe log-normal distribution using the FL algorithm. The heavy line
exact result only. is a linear fit of the percolation result&().
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FIG. 10. Normalizeds,vs L for the Weibull distribution using
the FL algorithm. The inset illustrates ho§y, saturates for small
values ofu.

FIG. 8. NormalizedG, vs L for the log-normal distribution
using the Migdal-Kadanoff renormalization. The inset illustrates
how &p saturates for small values of.

o for large values ofu, the three methods do not give exceed-
implies thatG.q should reach a constant value for a systemingly different values ofG,_. As the network becomes more

size beyond this length scale. Therefore it can be deduceg,y more disordered, the percolating behavior dominates the
from Fig. 7 that the disorder length in this case divergesqm of the curves. Methods that lead to a connected network
when x—0. are driven to a constant finite value &f; , while those

The MK network should percolate at a probability of oc- below the percolation threshold are driven to vanishing ef-

cupationp=0.5, because its threshold valuemf<p. This . .
mcfans tt?at the network should homogenize Fgpilc[i)ly with thégctlve conductance. Interestingly enough, the KR procedure

application of the renormalization recursion equation. At theg've]f.‘ reasogwatble rgsullts for ;/allresmfo.l, asthseer]lffrotm
same time, the disorder length should reach a saturatiowe Igure, but au 1S lowered close 1o zero, the ellective
value. Figure 8 verifies these predictions. Indeed, the Con(_:onductance vanishes rapidly, while the MK conductance re-

ductance reaches its asymptotic value after a few iteration%nalns finite. The true effective conductance falls in between,

of the renormalization rule. For King’s renormalization pro- ut ev_entually sho.uld.va'msh' a5 0. -
cedure, things are entirely different. Fo# 0.5, renormaliza- . We!bull (_:aseThls d'St”b“t'OU is not expected to exhibit a
tion should drive the conductance of the network to zerod'verglng disorder length provided that the exact and renor-

pecause e neor camnol percoige-(0616-05). " SN Tt oot o s etk g e o
Figure 9 clearly summarizes the differences among th

three procedures for computiii; when applied to the log- ribution. The Iwmtm_g blnaj)l/ distribution ag—0 has an
o ) ) . occupation fractionp=1—e™~. This value is larger than the
normal distribution. For a mildly disordered network, that is, p. of the square lattice and for either one of the renormal-
ization networks used in this work. For all cases, the value of
10° : : Ge, is reached after a few applications of the renormaliza-
g - tion recursion or equivalently for small sizes of the sample.
)-O\w& Figure 10 shows how the effective conductance behavgas as
107 p M ______ d is decreased. The exact result proves that if the curves are
= Ormeee e O 4 p
\ D\ collapsed, the resulting disorder length saturates raps
o inset of Fig. 10. Recalling thatp,=0.5 explains this rapid
£ 107 | ™ : convergence. By the same token, the MK network, being
o ] D\ well above its percolation threshold, evolves in the same way
\ 0 as the exact result with. The KR lattice is close to its value
\ : of p., and this should have an important effect on the final
¥ value of G¢q. It can be seen that the effective asymptotic
\ conductance of the KR procedure approaches the value of
the true conductance for large valuesof(Fig. 11). As u
10 10 -1 10 10 becomes smaller, the MK procedure result gets closer to the
u true conductance, while the KR result grows apart from the

FIG. 9. The effective conductance in the homogeneous limit Vstrue value OfoD'

the disorder strength parameterfor the log-normal distribution

function. (O) Migdal-Kadanoff procedure{{) FL algorithm; (<) V. DISCUSSION AND CONCLUSIONS

King's renormalization. The dashed line corresponds to the equiva-

lent conductance for percolation with=0.5, under application of We have studied the upscaling of hydraulic conductance
the MK recursion equation. of three distribution functions in the intervigd,1] on square
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0.6 ‘ ‘ ‘ asu—0. King's renormalization gives reasonable results for
#>0.1, but fails badly to estimate the correct valueGay,

for ©<<0.1. This should not come as a surprise given the
percolative character of the limiting distribution.

Weibull's limiting distribution has an effective probability
of occupation,p, that leads to connected networks for all
methods employed here. This means that in the vicinity of
=0, all procedures give a finite value Gng, andép never

diverges. However, because the KR hierarchical structure is
close to its value ofp; (from below), it tends to have the
lowest value ongD. The KR procedure, that works well in

relatively homogeneous systems, does not provide a good
estimate for the extreme disorder of the Weibull distribution.
-1 With respect to the MK renormalization, although it does not
n : : ) ) e
work for all cases, it remains as a better estimate in the limit
FIG. 11. The effective conductance in the homogeneous limit vf extreme disorder.
the disorder strength parameter for the Weibull distribution func- From the aforementioned discussion, it should be clear
tion. (O) Migdal-Kadanoff procedure;[{) FL algorithm; (¢)  that any of the renormalization methods employed here yield
King's renormalization. The dashed lines correspond to percolatiofegsonable values Geq for the square network, as long as
with p=0.632 for the three methods. remains sufficiently large. The latter is true for the power-
law distribution if u is larger than 0.1 approximately,
%/hereas for the log-normal and Weibull distributiops

networks by using an exact method, the FL algorithm, an
two approximate renormalization schemes, King's metho
and Migdal-Kadanoff procedure. The distribution functions
power-law, log-normal, and Weibull distributions exhibit
very different features under renormalization.

The main result for the power-law distribution is the ex-
istence of a disorder length, on square networks, that behav
in the same fashion as that found by Angulo and Med&ja
on hierarchical lattices. The disorder parametdras a criti-
cal valuep =0, for networks of effective dimensioth,=2.

ould be somewhat smaller. King’'s procedure performs, in

eneral, better than Migdal-Kadanoff, with the exception of
'the power-law distributioagain, only in the limit of non-
vanishingu). However, it is out of the scope of this article to
identify a particular method of renormalization, rather we
discuss the appropriate choice of the method. As we indicate,
®% choice refers to the strongest disorder limit, based on
percolation analysis.

The results for the Weibull and log-normal cases suggest
that the percolation analysis could be extrapolated to other

¢p diverges ae " in the proximity ofu=0, for all meth- _ giquipytions. There is a large number of distribution func-
ods employed for computing the effective conductance. Th‘ﬁons of resistances on t@<] domain that should exhibit

d|vergence exponent of the corrglauon length of ordinaryimjjar characteristics when the conductances are mapped
percolation is consistent with the divergence exponent of th

Bnto the[0,1] interval. For instance, an exponential distribu-
disorder length. This was verified for both renormalization [0.1] ' P

procedures employed in this work, which yield different val- tion function, P(r)=(l/u)exp(-r/u), goes to P(g)

— 2 _ _ . . -
ues ofv. This extends the conclusions of Angulo and Medinaﬂ(;(/gg z)exﬁongffgl(%égsistla)g.c;nditgt?iblgggng inot’mz(ogg

to square networks. It_'s expected that the same ho_lds fo(ﬁomain should produce a large accumulation of conductance
many other regular lattices. The dependenc@gfonu in | o1ues atg=0. Our extreme case is the power law, whose
the critical region agrees very well with the theoretical pre-|imit is 8(g). On the other hand, if we were dealing with
diction thatG§D~(1—pc)1’”. distributions of conductances in thi8~) region, it should
The log-normal distribution goes to a binary distribution be noticed that the way the random variables are combined
with a probability of occupationp=0.5 asu—0. This resembles that of the resistances. We propose that percola-
makes the analysis of the FL algorithm very interesting.tion ideas are directly applicable to this complementary case.
since the limitw =0 represents the exact percolation thresh- An interesting classical result, found by Bernasddri],
old of this lattice. This was verified by extensive simulationssuggests that the choice of the renormalization method
for large sizes and very small values @f The percolation should pay attention to the character of the limiting distribu-
line, represented by the effective conductance of the lattice dion. Although his renormalization procedure predicted
percolation, is indeed the limiting value of the log-normal wrong critical exponents, it gave good results for conductiv-
distribution. It turns out that the Migdal-Kadanoff renormal- ity in a square network at percolation. This result can be
ization drives the conductance of the network to a finiteexplained based on the fact that his renormalization proce-
value, as the MK lattice is well above the percolation thresh-dure had the same percolation threshold of the original net-
old. In this way, the disorder length saturates under thisvork, and hence its effective conductance vanished for the
renormalization scheme. King's renormalization, on thesame value op. This indicates that if the limiting distribu-
other hand, yields a vanishing value of the effective conduction leads to percolating behavior, the choice of the renor-
tance after a few applications of the recursion equation. Thenalization method should be based on a similarity of perco-
two procedures cause departures from the true value of comation thresholds, or else the effective conductance will be
ductance that are on opposite sides of the limiting behavioincorrectly predicted.
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